2 research outputs found

    Łukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Get PDF
    A novel approach to self-organizing, highly-complex systems (HCS), such as living organisms and artificial intelligent systems (AIs), is presented which is relevant to Cognition, Medical Bioinformatics and Computational Neuroscience. Quantum Automata (QAs) were defined in our previous work as generalized, probabilistic automata with quantum state spaces (Baianu, 1971). Their next-state functions operate through transitions between quantum states defined by the quantum equations of motion in the Schroedinger representation, with both initial and boundary conditions in space-time. Such quantum automata operate with a quantum logic, or Q-logic, significantly different from either Boolean or Łukasiewicz many-valued logic. A new theorem is proposed which states that the category of quantum automata and automata--homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines) are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R)--Systems which are open, dynamic biosystem networks with defined biological relations that represent physiological functions of primordial organisms, single cells and higher organisms

    Curvature of universal bundles of Banach algebras

    No full text
    Abstract. Given a Banach algebra we construct a principal bundle with connection over the similarity class of projections in the algebra and compute the curvature of the connection. The associated vector bundle and the connection are a universal bundle with attendant connection. When the algebra is the linear operators over a Hilbert module, we establish an analytic diffeomorphism between the similarity class and the space of polarizations of the Hilbert module. Likewise, the geometry of the universal bundle over the latter is studied. Instrumental is an explicit description of the transition maps in each case which leads to the construction of certain functions. These functions are in a sense pre-determinants for the universal bundles in question. Mathematics Subject Classification (2000) . Primary 46M20 37K20; Secondary 58B99 58B25
    corecore